PHYSICAL REVIEW E, VOLUME 64, 056613
Fractal structures and multiparticle effects in soliton scattering
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We study in detail the interaction of composite solitary waves and consider, as an example, the breather
collisions in a weakly discrete sine-Gordon equation. We reveal a physical mechanism of fractal soliton
scattering associated with multiparticle effects, and demonstrate chaotic interaction of two breathers with
incommensurable frequencies.
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The rapidly growing interest in the study of the solitary- the nth particle, the second term describes the energy of the
wave interaction in nonintegrable nonlinear moddls3|is  elastic coupling between theh and Q1+ 1)th particles, and
explained by the possibility of observing many of the pre-the last term is the energy of theth particle in a periodic

dicted effects experimentallj4], including the soliton en-  on-site potential. The corresponding equations of motion are
ergy and momentum exchange. One of the most intriguing

properties of soliton interactions in nonintegrable models is Uy—h~2(U,_y—2U,+ U, ;) +sinu, =0 1)
the observation of the fractal nature of their scattering, first
discussed for k|nl_<—ant|k|nk collisions in _the so—callfaidl and, in the long-wavelength approximation, they reduce to
model[5]. The main features of fractal soliton scattering areine well-known SG equationiy, — Uy, + sinu=0, which is
usually explained by the excitation of the soliton internal completely integrable by the inverse scattering transform
mode, which is an important property of solitary waves ofand, therefore, does not possess any kind of many-particle
many nonintegrable soliton-bearing modé@. Thus, the  effect in the soliton interaction&l0]. However, such many-
physics of fractal soliton scattering can be understood as gojiton effects may appear for the interaction of more than
resonant energy exchange between the soliton translationg{o solitary waves in the presence of small perturbations
motion and its internal modgr]. A similar mechanism was (gee, e.g., Ref§10,11)). In our case, a perturbation is gen-
revealed for the interaction of a kink with a localized impu- erated by a weak lattice discretenehsig small compare to
rity [8]. _ _ _ . the kink width, which is equal to)lLand it can be taken into

In this paper, we discuss a different physical mechanismyccount by a small dispersive correction to the SG equation
of fractal soliton scattering and consider, for simplicity andi the form (h2/12)u,,,. Physically, the condition of three-
historical tradition, the well-known model described by theparticle inelastic collisions requires that all three solitons

sine-Gordor(SG) equation weakly perturbed by discretenessmeet at one poirftl0,11], an event that is difficult to accom-
effects. In this case, the role of the soliton internal mode igyjish. However, if the colliding solitons are composite, i.e.,
negligible[6], and the fractal structures observed in solitonihey consist of several components or they present a bound
scattering should be explained by a qualitatively differentsiate of two simpler solitary waves, the many-particle effects
mechanism. In particular, we study the breather scattering igan already be observed for collisions of two composite soli-
such a model, and describe several interesting phenomeRgns. The simplest known example of this kind is the kink-
that can be understood as manifestations of multiparticle efyreather interaction in the SG modal], where energy ex-
fects in the soliton collisions, due to resonant coupling bechange between colliding solitons is observed even in the
tween the “atomic” and “molecular” degrees of freedom of \yeakly discrete limit. Thus, the energy exchange and multi-
the colliding composite solitons. particle effects seem to be common features of a cold gas of

We consider a discrete version of the well-known SGiinks and breathers, where all solitary waves have nearly
equation[often called the Frenkel-KontoroveFK) model  gqual velocities and their collision is accompanied by a
[9]] that describes the dynamics of a one-dimensional atomigirong energy and momentum exchange with a small amount
chain with the Hamiltonian of radiation emitted.

Multisoliton collisions in the SG equatiofo study the
breather scattering in a weakly discrete SG equation, first we
start from the exact solution that describes the interaction of
four kinks. Such a four-soliton solution of the SG equation
whereh is the lattice spacing and, is the displacement of can be obtained by means of thé dRund transformation
the nth particle, so that the first term is the kinetic energy of[13],

1. 1
H=; Euﬁ+ ﬁ(unﬂ—un)zﬂl—cosun) ,

u(x,t)=4tan ‘[f(x,t)/g(x,)], 2
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FIG. 2. Comparison of the breather interactionganthe dis-
crete model(1) and (b) the unperturbed SG equation, f@r°
FIG. 1. Top: Dynamics of the breather interaction in the unper-~ — 0-96. V81=Vg2=0, 0g;=0.2, andwg; = (4/5)we,.
turbed SG equation{a) D°=4.0, () D°=0.2, and (c) D° o 0 o o
=—0.34. Bottom: The difference,.;—t, as a function ofD®, ~ €rs,D”=Xg,—Xg,. The bold curves in Figs.(&)-1(c) show
wheret,, is the time of thenth peak of the kinetic energy. the regions with energy density greater than 3.0 and thus the
breather constituentgkinks and antikinks can be easily
1 seen. In Fig. (a), the breathers are far from each other and
f(x)=2 X b, . kX + -+m), (3  therefore they do not interact, but in Figsbland Xc) they
m=0¢c3 | overlap significantly, and we can observe their interaction as
periodic modulations of the unperturbed kink trajectories.
In Figs. 1@—1(c), the collisions of two subkinks that con-
gx)=2> > by xexpm - +n), (4 stitute a breather are marked by open circles. When two or
0 ~4 . . . .
Com more subkinks collide at one point, a sharp peak of the ki-
4 o netic energy is observed. We denote the time ofritiepeak
from four elements. In Eqg3) and(4)2, the 30“'[0% param- distance between the breathésee Fig. 1, bottom When
eters are defined as»=[(1+£&)/2§]1(x—x7)—[(1  the breathers are well separated, the system has three char-
— £2)12¢,1t, where¢; is a complex eigenvalue, and is the  acteristic periods. For the interacting breathers, the number
initial position of theith soliton. The coefficient®, of periods is doubled, and for the strongly overlapping
:Hlm<nakmkn for I=2, andb,_ . =1 for 1=0,1, where tir:eﬁthe_rsz,_rn can be et?]ual to four I(IJr five. Tr?e peribd
aij=—(&—&)%(&+&)? Areal & corresponds to a kink ThBl_tw B2 \r/er;?alnsin %rsarphe rm \;;\I/itr(l:asfnsn? rc:wr;. ble fr
(&>0) or an antikink €<0) moving with the velocity us, Wo overiapping breathers commensurapie fre-
_ 2 2 quenciesM wg;=Nwg, can be regarded as a four-kink com-
Vi=(1-&)I(1+&). . . o = .
: . . . posite state with the perioc=NTg;=MTg,. The periodT
Any two kinks, sayi andj, can be coupled into a breather. ;
. 0.0 .0 does not depend on the distariz® but the appearance of the
In this case, we takg; =x; =Xg and the parametei§ and

) > i sharp peaks in the kinetic energy within this period depends
¢j are complex conjugate; =& = a;; +ip;; . The breather  , 1o "one can see that, if the ratMd/N is an irreducible
velocity Vg, its frequencywg, "’z‘”d the p2er|od of oscillation  fraction with largeM or N, then the periodr is also large.

Ts are defined as‘VB:(l_Rii)é(l’L Rij), 2“’82223“ /(1 For irrationalM/N, T is infinitely large, so that the breather
+Rjj), andTg=2m/wg, WhereR|;= &&= ajj + B . motion looks aperiodic, and the peaks of the kinetic energy
A four-soliton solution of the SG equation is a nonlinear also appear aperiodically. In this sense, we can say that even
superposition olNy kinks andNg breathersNg+2Ng=4,  the unperturbed SG equation contains “a seed of chaos.”
so that the total soliton energy is equal to the sum of the Breather collisions in a discrete modéh order to under-
energies of the kinks and, in this sense, multiparticle effectstand how the properties of the SG model are broken by
are absent. However, some reminiscence of multisoliton efnonintegrability, we study the dynamics of BB collisions in a
fects can be observed even in the unperturbed SG equatigiieakly discrete SG modehE&0.2). Equationg1) were in-
when a pair of breathers collide with velocities very close totegrated numerically with the use of ‘&teer method of order
each other. To see that, for the breather-breat8B) solu- 6 with the time stepAt=10"%. The numerical data reported
tion we take the parametes =&, £=£&; andx{=x3  below do not vary essentially with further decreas@of To
=Xa1, X3=X3=x3,. In Figs. ¥a-1(c), we show the time set the initial conditions, we use the analytical BB solution of
evolution of the unperturbed BB system with the initial ve- the unperturbed SG equation.
locities Vg1=Vg,=0 and frequenciesvg;=0.2 and wg, In Fig. 2 we compare the BB interactions in the discrete
=(2/3)wg,, and we vary the initial distance between breath-FK system with the exact BB solution of the unperturbed SG

056613-2



FRACTAL STRUCTURES AND MULTIPARTICIE . .. PHYSICAL REVIEW E 64 056613

100 \ l g.osﬁ =, A FIRIBE! @)
N [
- (@ (b) © R AN SR A &é&
0 ;#&F 0 02 04 06 08 1
-100 0.05H—=——3¢ ik ol I
400 K I \\ £ oy .‘"-.\ '?.11 ,;.'o . (b)
Y3 Ny AN
| N/ A\ 014 o616 o015 0z ox
300 (d © )
200 = H gcg.os B :’.°-, [l 1% ", ()
400_ - - o Fosl NI ° XY
X H 7 0176  0.178  0.18
N
N - . .
300-N N LA | 0.05)—a—fsk e 15 L
=~ | | h) | | i G o 5N . F 3 Lo (d)
| i a 7'e, 2. < NSy
200_ il i 04773 0.1776 0.1778
30 0 30 -30 0 30 -30 0 30 D’
X X X

. FIG. 4. Fractal structuréfour scales are showrof breather
FIG. 3. Examples of the breather scattering in a perturbed S%ollisions shown as the functiovi’ (D°)
B .

model for the initial velocities/g;=—0.2 andVg,=0.2, and the
frequencieswg;=0.1 and wg,= (4/5)wg;. (@ D°=20.0, (b) D°

=4.3,(c) D°=8.1, (d) D°=100.0,(e) D°=104.1,(f) D°=104.13,
(g) D°=104.26,(h) D°=104.285, andi) D°=104.33.

each other. In Fig. @l), the breathers oscillate nearly in
phase. Nevertheless, the collision in Figd)3is elastic be-
cause it occurs without involving three- or four-kink colli-
equation with zero initial velocities of both breathers. Thesions. In contrast, in Figs(B) and 3c), three-kink collisions
SG equation predicts an oscillatory motion of the breathers¢an be seen and, in Figs(eg-3(i), all four kinks manifest
as demonstrated in Fig(l9, because they attract each other, themselves in the collision. Additionally, one of the colliding
oscillating nearly in phase, and then repel each other, oscilreathergor even both of thepncan break up into subkinks.
lating nearly out of phase. The period of oscillationsTis The breaking up takes place only for breathers with suffi-
=5Tg,=4Tg,, WhereTg, and Tg, are the periods of the ciently small frequencies; otherwise, the inelasticity of the
individual breathers. collision causes energy and momentum exchange between
In a weakly discrete SG systelsee Fig. 2a)], the attrac-  the breathers, as is shown in Fidi)3
tion between the colliding breathers when they are in phase Inelastic collisions occur only when more than two sub-
is not fu”y Compensated by the repu|sion when they are Oul(inks collide at one pOint. This event has a small probablllty
of phase. As a result, the mean distance between the breathod thus the multiparticle effects are observed in a narrow
ers becomes smaller and they collide. The weak attraction gegion of D°. An important exception is the case when the
the breathers, which is due to the fact that the attraction forcBreathers collide with very small relative velocities. In this
is not fu”y Compensated by the repu|sion force, appears heCase, the time of collision is much Iarger than the periOd of
cause of the model discreteness, which breaks its integrabilbe breather oscillation and, regardless of the valu®%f
ity. Another nontrivial effect of discreteness is the energythe BB collisions are always inelastic. We also mention that
and momentum exchange between the colliding breather#e radiation losses are very small in all the cases discussed.
During the interaction, the breathers can gain some velocity Fractal structures in breather scatteringVe study in
and the BB system can split into two independent breathergore detail the process of the breakup of the BB system into
or even into individual subkinks. two separate breathers. A typical example of such a breakup
Criteria for inelastic collisionsThe inelasticity of many- Process is shown in Fig.(@. We select the parameters
soliton collisions in a weakly discrete model drastically in- @g1=0.2, wg>=(4/5)wg;, Vg1=Vp>=0, and change the
creases in the vicinity of a separatrix solution of the unperdnitial distance between the breathers. After breaking up, the
turbed SG equation. As a matter of fact, we notice a simpléwo independent breathers move in opposite directions. The
practical criterion for such inelasticity based on the fact tha@bsolute values of their velocities are nearly equal because in
in a weakly discrete system the effective perturbation plays & weakly discrete chain momentum conservation is nearly
key role. Indeed, our numerical results suggest that the Beulfilled and, for our choice of parameters, the breathers have
collisions in the discrete system are strongly inelastic if and1€arly the same energies.
only if the term in the form of the derivative,,, calculated We denote the breather velocity after splitting\és, and
for the unperturbed SG solution has a pronounced maximunplot this value in Fig. 4a) as a function of the initial distance
Typical collisions of two breathers are shown in Figs.D% The function V(D% shows the property of self-
3(a)—3(i). In Figs. 3a) and 3d), the collisions are practically similarity at different scales usually associated with fractal
elastic, i.e., there is no energy and momentum exchange bseattering. Four levels of such similarity are presented in
tween breathers. In all other cases, the BB collisions ar&igs. 4a)—4(d), where each succeeding figure is shown for
inelastic. In Fig. 8a), at the moment of collision, the breath- the interval expanded from a smaller region marked loy
ers oscillate nearly out of phase, and that is why they repahe preceding one. The expansion coefficient is about 13.5
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for each step. At each scale, the functisfi(D°) looks like  resonant energy exchange between the “atomikihk’s
an alternation of smooth and chaotic domains. However, dranslationgland “molecular” (relative oscillatory breather
larger magnification, each chaotic domain again containslegrees of freedom, and to fractal scattering.
chaotic regions and smooth peaks. Thus, the output velocity Above, we have analyzed the collision of breathers with
(DY) is actually a set of smooth peaks of different scalescommensurable frequencies and the results presented in Fig.
In some regions, the width of the peaks vanishes and th8 look similar for other cases. In particular, the collision is
density of the peaks goes to infinity. At the same time, theextremely sensitive to the mutual phase of the colliding
height of the peaks remains the same at each scale. Thgeathers, which depends &?. Obviously, if the breathers
fractal structure of the functiok§(D°) proves the chaotic have incommensurable frequencies, the mutual phase be-
character of breather scattering in a weakly discrete modelcomes an aperiodic function &°, which results in chaotic
The fractal nature of breather collisions can have a simplgreather scattering.
physical explanation. As was shown above, in a weakly dis- |5 conclusion, we have revealed a physical mechanism of
crete(and, therefore, weakly perturbeslystem the breathers factal soliton scattering that is not associated with the kink’s
attract each other with a weak force. As can be seen f0fheral modes. This mechanism of inelastic soliton scatter-
Fig. 4, the chaotic regions appear where the extrapolation qf,y a5 heen demonstrated for the simplest case of breather
the. smooth peaks gives .nearly Zero veloo"tg’; In thes.e (a bound state of a kink and antikingcattering in the sine-
regions, the breathers gain a very small velocity after intergorgon model, but it seems to be a common feature of many
action and subsequent splitting. With such a small initialyonintegrable nonlinear models that support composite soli-

velocity, the breathers cannot overcome their mutual attract-ary waves, e.g., the models recently analyzed in Réfs.
tion and collide again. In the second collision, due to mo-

mentum exchange, the breathers can acquire an amount of The authors acknowledge helpful discussions with S. Tak-
kinetic energy sufficient to escape each other, but there exiseno, D. ludin, and D. Semagin. S.V.D. acknowledges sup-
a finite probability of gaining kinetic energy below the es- port from JSPS. Y.S.K. acknowledges partial support from
cape limit. In the latter case, the breathers will collide for athe Performance and Planning Fund of the Institute for Ad-
third time, and so on. Thus, a series of collisions leads to aanced Studies.
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