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Fractal structures and multiparticle effects in soliton scattering
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We study in detail the interaction of composite solitary waves and consider, as an example, the breather
collisions in a weakly discrete sine-Gordon equation. We reveal a physical mechanism of fractal soliton
scattering associated with multiparticle effects, and demonstrate chaotic interaction of two breathers with
incommensurable frequencies.
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The rapidly growing interest in the study of the solitar
wave interaction in nonintegrable nonlinear models@1–3# is
explained by the possibility of observing many of the p
dicted effects experimentally@4#, including the soliton en-
ergy and momentum exchange. One of the most intrigu
properties of soliton interactions in nonintegrable models
the observation of the fractal nature of their scattering, fi
discussed for kink-antikink collisions in the so-calledf4

model@5#. The main features of fractal soliton scattering a
usually explained by the excitation of the soliton intern
mode, which is an important property of solitary waves
many nonintegrable soliton-bearing models@6#. Thus, the
physics of fractal soliton scattering can be understood a
resonant energy exchange between the soliton translat
motion and its internal mode@7#. A similar mechanism was
revealed for the interaction of a kink with a localized imp
rity @8#.

In this paper, we discuss a different physical mechan
of fractal soliton scattering and consider, for simplicity a
historical tradition, the well-known model described by t
sine-Gordon~SG! equation weakly perturbed by discretene
effects. In this case, the role of the soliton internal mode
negligible @6#, and the fractal structures observed in solit
scattering should be explained by a qualitatively differe
mechanism. In particular, we study the breather scatterin
such a model, and describe several interesting phenom
that can be understood as manifestations of multiparticle
fects in the soliton collisions, due to resonant coupling
tween the ‘‘atomic’’ and ‘‘molecular’’ degrees of freedom o
the colliding composite solitons.

We consider a discrete version of the well-known S
equation @often called the Frenkel-Kontorova~FK! model
@9## that describes the dynamics of a one-dimensional ato
chain with the Hamiltonian

H5(
n

F1

2
u̇n

21
1

2h2
~un112un!21~12cosun!G ,

whereh is the lattice spacing andun is the displacement o
thenth particle, so that the first term is the kinetic energy
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the nth particle, the second term describes the energy of
elastic coupling between thenth and (n11)th particles, and
the last term is the energy of thenth particle in a periodic
on-site potential. The corresponding equations of motion

ün2h22~un2122un1un11!1sinun50, ~1!

and, in the long-wavelength approximation, they reduce
the well-known SG equationutt2uxx1sinu50, which is
completely integrable by the inverse scattering transfo
and, therefore, does not possess any kind of many-par
effect in the soliton interactions@10#. However, such many-
soliton effects may appear for the interaction of more th
two solitary waves in the presence of small perturbatio
~see, e.g., Refs.@10,11#!. In our case, a perturbation is gen
erated by a weak lattice discreteness (h is small compare to
the kink width, which is equal to 1!, and it can be taken into
account by a small dispersive correction to the SG equa
in the form (h2/12)uxxxx. Physically, the condition of three
particle inelastic collisions requires that all three solito
meet at one point@10,11#, an event that is difficult to accom
plish. However, if the colliding solitons are composite, i.
they consist of several components or they present a bo
state of two simpler solitary waves, the many-particle effe
can already be observed for collisions of two composite s
tons. The simplest known example of this kind is the kin
breather interaction in the SG model@12#, where energy ex-
change between colliding solitons is observed even in
weakly discrete limit. Thus, the energy exchange and mu
particle effects seem to be common features of a cold ga
kinks and breathers, where all solitary waves have ne
equal velocities and their collision is accompanied by
strong energy and momentum exchange with a small amo
of radiation emitted.

Multisoliton collisions in the SG equation. To study the
breather scattering in a weakly discrete SG equation, first
start from the exact solution that describes the interaction
four kinks. Such a four-soliton solution of the SG equati
can be obtained by means of the Ba¨cklund transformation
@13#,

u~x,t !54 tan21@ f ~x,t !/g~x,t !#, ~2!

where
te
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f ~x,t !5 (
m50

1

(
C2m11

4
bk1 , . . . ,kl

exp~hk1
1•••1hkl

!, ~3!

g~x,t !5 (
m50

2

(
C2m

4
bk1 , . . . ,kl

exp~hk1
1•••1hkl

!, ~4!

andCj
4 stands for a sum over all combinations ofj elements

from four elements. In Eqs.~3! and ~4!, the soliton param-
eters are defined ash i5@(11j i

2)/2j i #(x2xi
0)2@(1

2j i
2)/2j i #t, wherej i is a complex eigenvalue, andxi

0 is the
initial position of thei th soliton. The coefficientsbk1 , . . . ,kl

5)m,n
l akmkn

for l>2, andbk1 , . . . ,kl
51 for l 50,1, where

ai j 52(j i2j j )
2/(j i1j j )

2. A real j i corresponds to a kink
(j i.0) or an antikink (j i,0) moving with the velocity
VK5(12j i

2)/(11j i
2).

Any two kinks, sayi andj, can be coupled into a breathe
In this case, we takexi

05xj
05xB

0 and the parametersj i and
j j are complex conjugate,j i5j j* 5a i j 1 ib i j . The breather
velocity VB , its frequencyvB , and the period of oscillation
TB are defined asVB5(12Ri j

2 )/(11Ri j
2 ), vB52b i j /(1

1Ri j
2 ), andTB52p/vB , whereRi j

2 5j ij j5a i j
2 1b i j

2 .
A four-soliton solution of the SG equation is a nonline

superposition ofNK kinks andNB breathers,NK12NB54,
so that the total soliton energy is equal to the sum of
energies of the kinks and, in this sense, multiparticle effe
are absent. However, some reminiscence of multisoliton
fects can be observed even in the unperturbed SG equ
when a pair of breathers collide with velocities very close
each other. To see that, for the breather-breather~BB! solu-
tion we take the parametersj15j2* , j35j4* and x1

05x2
0

5xB1
0 , x3

05x4
05xB2

0 . In Figs. 1~a!–1~c!, we show the time
evolution of the unperturbed BB system with the initial v
locities VB15VB250 and frequenciesvB150.2 and vB2
5(2/3)vB1, and we vary the initial distance between brea

FIG. 1. Top: Dynamics of the breather interaction in the unp
turbed SG equation:~a! D054.0, ~b! D050.2, and ~c! D0

520.34. Bottom: The differencetn112tn as a function ofD0,
wheretn is the time of thenth peak of the kinetic energy.
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0 . The bold curves in Figs. 1~a!–1~c! show
the regions with energy density greater than 3.0 and thus
breather constituents~kinks and antikinks! can be easily
seen. In Fig. 1~a!, the breathers are far from each other a
therefore they do not interact, but in Figs. 1~b! and 1~c! they
overlap significantly, and we can observe their interaction
periodic modulations of the unperturbed kink trajectories

In Figs. 1~a!–1~c!, the collisions of two subkinks that con
stitute a breather are marked by open circles. When two
more subkinks collide at one point, a sharp peak of the
netic energy is observed. We denote the time of thenth peak
by tn and plot the valuetn112tn as a function of the initial
distance between the breathers~see Fig. 1, bottom!. When
the breathers are well separated, the system has three
acteristic periods. For the interacting breathers, the num
of periods is doubled, and for the strongly overlappi
breathers, it can be equal to four or five. The periodT
53TB152TB2 remains the same in all cases shown.

Thus, two overlapping breathers with commensurable
quenciesMvB15NvB2 can be regarded as a four-kink com
posite state with the periodT5NTB15MTB2. The periodT
does not depend on the distanceD0 but the appearance of th
sharp peaks in the kinetic energy within this period depe
on D0. One can see that, if the ratioM /N is an irreducible
fraction with largeM or N, then the periodT is also large.
For irrationalM /N, T is infinitely large, so that the breathe
motion looks aperiodic, and the peaks of the kinetic ene
also appear aperiodically. In this sense, we can say that e
the unperturbed SG equation contains ‘‘a seed of chaos.

Breather collisions in a discrete model.In order to under-
stand how the properties of the SG model are broken
nonintegrability, we study the dynamics of BB collisions in
weakly discrete SG model (h50.2). Equations~1! were in-
tegrated numerically with the use of Sto¨rmer method of order
6 with the time stepDt51024. The numerical data reporte
below do not vary essentially with further decrease ofDt. To
set the initial conditions, we use the analytical BB solution
the unperturbed SG equation.

In Fig. 2 we compare the BB interactions in the discre
FK system with the exact BB solution of the unperturbed S

-

FIG. 2. Comparison of the breather interactions in~a! the dis-
crete model~1! and ~b! the unperturbed SG equation, forD0

520.96, VB15VB250, vB150.2, andvB25(4/5)vB1.
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equation with zero initial velocities of both breathers. T
SG equation predicts an oscillatory motion of the breath
as demonstrated in Fig. 2~b!, because they attract each oth
oscillating nearly in phase, and then repel each other, o
lating nearly out of phase. The period of oscillations isT
55TB154TB2, whereTB1 and TB2 are the periods of the
individual breathers.

In a weakly discrete SG system@see Fig. 2~a!#, the attrac-
tion between the colliding breathers when they are in ph
is not fully compensated by the repulsion when they are
of phase. As a result, the mean distance between the br
ers becomes smaller and they collide. The weak attractio
the breathers, which is due to the fact that the attraction fo
is not fully compensated by the repulsion force, appears
cause of the model discreteness, which breaks its integr
ity. Another nontrivial effect of discreteness is the ener
and momentum exchange between the colliding breath
During the interaction, the breathers can gain some velo
and the BB system can split into two independent breath
or even into individual subkinks.

Criteria for inelastic collisions.The inelasticity of many-
soliton collisions in a weakly discrete model drastically i
creases in the vicinity of a separatrix solution of the unp
turbed SG equation. As a matter of fact, we notice a sim
practical criterion for such inelasticity based on the fact t
in a weakly discrete system the effective perturbation play
key role. Indeed, our numerical results suggest that the
collisions in the discrete system are strongly inelastic if a
only if the term in the form of the derivativeuxxxx calculated
for the unperturbed SG solution has a pronounced maxim

Typical collisions of two breathers are shown in Fig
3~a!–3~i!. In Figs. 3~a! and 3~d!, the collisions are practically
elastic, i.e., there is no energy and momentum exchange
tween breathers. In all other cases, the BB collisions
inelastic. In Fig. 3~a!, at the moment of collision, the breath
ers oscillate nearly out of phase, and that is why they re

FIG. 3. Examples of the breather scattering in a perturbed
model for the initial velocitiesVB1520.2 andVB250.2, and the
frequenciesvB150.1 andvB25(4/5)vB1. ~a! D0520.0, ~b! D0

54.3, ~c! D058.1, ~d! D05100.0,~e! D05104.1,~f! D05104.13,
~g! D05104.26,~h! D05104.285, and~i! D05104.33.
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each other. In Fig. 3~d!, the breathers oscillate nearly i
phase. Nevertheless, the collision in Fig. 3~d! is elastic be-
cause it occurs without involving three- or four-kink coll
sions. In contrast, in Figs. 3~b! and 3~c!, three-kink collisions
can be seen and, in Figs. 3~e!–3~i!, all four kinks manifest
themselves in the collision. Additionally, one of the collidin
breathers~or even both of them! can break up into subkinks
The breaking up takes place only for breathers with su
ciently small frequencies; otherwise, the inelasticity of t
collision causes energy and momentum exchange betw
the breathers, as is shown in Fig. 3~i!.

Inelastic collisions occur only when more than two su
kinks collide at one point. This event has a small probabi
and thus the multiparticle effects are observed in a nar
region of D0. An important exception is the case when t
breathers collide with very small relative velocities. In th
case, the time of collision is much larger than the period
the breather oscillation and, regardless of the value ofD0,
the BB collisions are always inelastic. We also mention t
the radiation losses are very small in all the cases discus

Fractal structures in breather scattering.We study in
more detail the process of the breakup of the BB system
two separate breathers. A typical example of such a brea
process is shown in Fig. 2~a!. We select the parameter
vB150.2, vB25(4/5)vB1 , VB15VB250, and change the
initial distance between the breathers. After breaking up,
two independent breathers move in opposite directions.
absolute values of their velocities are nearly equal becaus
a weakly discrete chain momentum conservation is ne
fulfilled and, for our choice of parameters, the breathers h
nearly the same energies.

We denote the breather velocity after splitting asVB* , and
plot this value in Fig. 4~a! as a function of the initial distance
D0. The function VB* (D0) shows the property of self
similarity at different scales usually associated with frac
scattering. Four levels of such similarity are presented
Figs. 4~a!–4~d!, where each succeeding figure is shown
the interval expanded from a smaller region marked byI in
the preceding one. The expansion coefficient is about 1

G
FIG. 4. Fractal structure~four scales are shown! of breather

collisions shown as the functionVB* (D0).
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for each step. At each scale, the functionVB* (D0) looks like
an alternation of smooth and chaotic domains. However
larger magnification, each chaotic domain again conta
chaotic regions and smooth peaks. Thus, the output velo
VB* (D0) is actually a set of smooth peaks of different scal
In some regions, the width of the peaks vanishes and
density of the peaks goes to infinity. At the same time,
height of the peaks remains the same at each scale.
fractal structure of the functionVB* (D0) proves the chaotic
character of breather scattering in a weakly discrete mod

The fractal nature of breather collisions can have a sim
physical explanation. As was shown above, in a weakly d
crete~and, therefore, weakly perturbed! system the breather
attract each other with a weak force. As can be seen f
Fig. 4, the chaotic regions appear where the extrapolatio
the smooth peaks gives nearly zero velocityVB* . In these
regions, the breathers gain a very small velocity after in
action and subsequent splitting. With such a small ini
velocity, the breathers cannot overcome their mutual att
tion and collide again. In the second collision, due to m
mentum exchange, the breathers can acquire an amou
kinetic energy sufficient to escape each other, but there e
a finite probability of gaining kinetic energy below the e
cape limit. In the latter case, the breathers will collide fo
third time, and so on. Thus, a series of collisions leads t
D
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resonant energy exchange between the ‘‘atomic’’~kink’s
translational! and ‘‘molecular’’ ~relative oscillatory! breather
degrees of freedom, and to fractal scattering.

Above, we have analyzed the collision of breathers w
commensurable frequencies and the results presented in
3 look similar for other cases. In particular, the collision
extremely sensitive to the mutual phase of the collidi
breathers, which depends onD0. Obviously, if the breathers
have incommensurable frequencies, the mutual phase
comes an aperiodic function ofD0, which results in chaotic
breather scattering.

In conclusion, we have revealed a physical mechanism
fractal soliton scattering that is not associated with the kin
internal modes. This mechanism of inelastic soliton scat
ing has been demonstrated for the simplest case of brea
~a bound state of a kink and antikink! scattering in the sine-
Gordon model, but it seems to be a common feature of m
nonintegrable nonlinear models that support composite s
tary waves, e.g., the models recently analyzed in Refs.@1#.
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